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Abstract
Background and objectives: Gremlin-1 (GREM1) was recently reported to maintain the cellular heterogeneity of pancreatic can-
cer. However, the function of GREM1 in endometrial cancer remains elusive. The purpose of this study was to investigate the 
underlying mechanisms of GREM1 in endometrial cancer using an ensemble learning-based framework.

Methods: The training and test cohorts were gathered from The Cancer Genome Atlas and Genome Expression Omnibus data-
bases, respectively. The cohorts were divided into low-GREM1 and high-GREM1 groups. Differentially expressed gene analy-
sis, weighted gene co-expression network analysis, and Mfuzz clustering were implemented in the training cohort to screen 
genes with GREM1. The genes were subjected to machine learning-based integration for selecting key genes with GREM1. To-
gether with the Bayesian network inference and Kyoto Encyclopedia of Genes and Genome enrichment analysis on key genes 
and GREM1, the potential pathway of GREM1 in endometrial cancer was illustrated. Leveraging the CIBERSORT analysis tool 
and single sample gene set enrichment analysis, the immune landscape of endometrial cancer was investigated to identify the 
immune cells with GREM1 and key genes.

Results: A set of 10 key genes (FAP, THBS1, POSTN, INHBA, ASPN, COL3A1, IGFBP5, COL8A1, FN1, and COL5A2) highly 
linked to GREM1 were obtained. Moreover, GREM1 may regulate extracellular matrix-related pathways in endometrial cancer, 
affecting extracellular matrix degradation involving collagen-related key genes. Finally, we found increased infiltration of mast 
cells in the high-GREM1 group, accompanied by their positive correlations.

Conclusions: GREM1 regulated extracellular matrix modulation in endometrial cancer by interacting with key genes, with 
mast cells serving as a signature.
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Introduction
Global cancer statistics released in 2020 indicated that endometrial 

cancer has become the sixth most common gynecological tumor, 
with an estimated 417,367 new cases and 97,370 deaths world-
wide.1 The American Cancer Society also reported an increasing 
incidence and mortality trend for endometrial cancer in recent 
years, which underscores the urgent demand to develop more ef-
fective strategies for diagnosis and treatment.2 As endometrial can-
cer is frequently symptomatic and detectable at an early stage, such 
as abnormal vaginal bleeding, most cases are diagnosed at Stage 
I and have favorable outcomes after prompt surgically curable.3,4 
However, worse clinical outcomes often occurred in patients with 
advanced-stage, recurrence, or metastatic endometrial cancers, 
partly direct to the abnormal molecular features of the highly ag-
gressive tumor cells gained in the disease progress.5,6

Gremlin-1 (GREM1), a bone morphogenic protein (BMP) an-
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tagonist, has been known to induce carcinogenesis through multiple 
mechanisms, such as BMP dependent pathway or vascular endothe-
lial growth factor receptor (VEGFR) signaling pathway.7 Previous 
studies have indicated elevated expression levels and carcinogenic 
roles of GREM1 in various malignancies, such as carcinomas of lung, 
ovary, kidney.8 Recently, GREM1 was identified as a critical regula-
tor of cellular heterogeneity in pancreatic cancer whose over-expres-
sion could restrict epithelial-to-mesenchymal transition by interacting 
with BMP, inhibiting tumor metastasis.9 Cheng et al. showed that 
GREM1 promotes lineage plasticity and castration resistance by tar-
geting fibroblast growth factor receptor 1, which is a candidate thera-
peutic target for prostate cancer.10 These inspiring findings provide a 
new perspective for understanding the function of GREM1 in cancer 
progression and treatment. Nevertheless, little evidence has illustrated 
the certain underlying role of GREM1 in endometrial cancer. Accord-
ingly, more efforts should be urgently dedicated to elucidating the 
mechanism of GREM1 in endometrial cancer.

Herein, we conducted a comprehensive bioinformatics work-
flow, accompanied by machine learning-based integration, to ex-
plore the underlying mechanism of GREM1 in endometrial can-
cer. First, the gene expression profiles of endometrial cancer were 
obtained through The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) databases, which were used as the 
training cohort and test cohort respectively. The mRNA and pro-
tein expression patterns of GREM1 were then explored at the pan-
cancer level, including endometrial cancer. Second, we classified 
the training cohort into low-GREM1 and high-GREM1 groups and 
identified the differentially expressed genes (DEGs) between the 
two groups. The Weighted Gene Co-expression Network Analy-
sis (WGCNA) and Mfuzz clustering were conducted to discern 
gene expression patterns highly related to the high-GRME1 group. 
Third, we took the intersection of genes associated with high-
GREM1 generated by the DEGs analysis, WCGNA, and Mfuzz. 
Subsequently, these genes were subjected to a machine learning-
based integration procedure for further selection.11 Fourth, we as-
sessed the classification performance of the selected key gene on 
low- and high-GREM1 groups. We then investigated the potential 
mechanism of GREM1 through the combination of pathway en-
richment analysis and Bayesian network (BN) inference on key 
genes. To deepen the illustration of the underlying mechanism of 
GREM1 in immune regulation, we further explored the association 
of the key genes (GREM1 was also included) with immune-cell 
infiltration in endometrial cancer. Overall, our study revealed the 
potential pathways of GREM1 in endometrial cancer from integra-
tive bioinformatics methods, which might expand our understand-
ing of its function in tumor development.

Material and methods

Data gathering and processing
The gene expression profiles of endometrial cancer were collected 
from the TCGA database (https://portal.gdc.cancer.gov/) and the 
GEO database (http://www.ncbi.nlm.nih.gov/geo). The training 
cohort [Cancer Genome Atlas-Uterine Corpus Endometrial Car-
cinoma (TCGA-UCEC)] was acquired from the TCGA database 
using TCGA biolinks R package, including 35 normal endometrial 
tissues and 554 endometrial cancer tissues.12 The test cohort was 
obtained from five GEO datasets using the GEOquery R package, 
including GSE2109, GSE17025, GSE36389, GSE106191, and 
GSE115810.13–16 The probes were then transformed to official 
gene symbols through the platform annotations. The raw count 

data from TCGA was converted into transcripts per kilobase mil-
lion format and subjected to the log2 transformation process. The 
raw count data from GEO were processed with the limma and sva 
R packages for log2 transformation, normalization, and batch effect 
removal. The five GEO datasets were merged into the test cohort, 
which contained 216 endometrial cancer samples. The sample size 
of the included analysis of GREM1 expression in pan-caner and 
endometrial cancer datasets is shown in Table 1.

Leveraging the TCGA, genotype-tissue expression (GTEx), 
and clinical proteomic tumor analysis consortium (CPTAC) data-
bases, we explored the mRNA and protein expression distribution 
of GREM1 across extensive cancer types. The datasets used in this 
part can be found in Table 2. The tumor immune estimation resource 
(TIMER) online tool (https://cistrome.shinyapps.io/timer/) was to 
investigate the GREM1 expression pattern in the TCGA database.17 
The R package ggplot2 was used to characterize the GREM1 ex-
pression pattern of TCGA target GTEx datasets from The Univer-
sity of California Santa Cruz (UCSC) Genome Browser database 
(https://xenabrowser.net/).18 Subsequently, the protein expression 
distributions of GREM1 on the CPTAC database were evaluated by 
The University of ALabama at Birmingham CANcer (UALCAN) 
online tool (http://ualcan.path.uab.edu).19 Additionally, the Human 
Protein Atlas (HPA) database (https://www.proteinatlas.org/) was 
used to demonstrate the differential protein expression of GREM1 
in normal endometrial tissue versus endometrial cancer tissue.

Analysis of GREM1 expression on prognosis and clinicopatho-
logical characteristics in different cancers
Herein, we focused on the prognosis and clinicopathological 
feature analyses of 12 cancer types: breast invasive carcinoma 
(BRCA), cholangiocarcinoma, head and neck squamous cell car-
cinoma (HNSC), lung adenocarcinoma, lung squamous cell car-
cinoma (LUSC), stomach adenocarcinoma (STAD), glioblastoma 
multiforme(GBM), kidney chromophobe (KICH), kidney renal 
clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma 
(KIRP), thyroid carcinoma (THCA), and uterine corpus endome-
trial carcinoma (UCEC), which displayed the differential expres-
sion of GREM1 compared with the normal controls, in the TCGA 
database. To gain insight into the effect of GREM1 expression on 
the prognosis and clinicopathological characteristics of tumor pa-
tients, the gene expression profiling interactive analysis tool was 
first used to perform the prognosis analysis. Kaplan-Meier (K-M) 
curves for overall survival (OS) were performed to investigate the 
prognostic differences between the low-GREM1 and high-GREM1 
expression groups. Clinicopathological characteristics of 12 cancer 
types, containing age, tumor grade, T/N/M stage, and tumor stage, 
were downloaded from the UCSC database. Samples with miss-
ing or incomplete clinicopathological information were excluded 

Table 1.  Sample size of datasets used in this study

Dataset Sample size

TCGA-UCEC 589 samples (35 controls; 554 tumors)

GSE2109 17 tumors

GSE17025 91 tumors

GSE36389 20 tumors

GSE106191 64 tumors

GSE115810 24 tumors

TCGA-UCEC, The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma.
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from the analysis. Then, we delineated and explored the GREM1 
expression distributions in different clinicopathological character-
istic groups using the ComplexHeatmap and ggpbur R packages.

Identification of DEGs in the low-GREM1 and high-GREM1 
expression groups
The normal endometrial samples of the training cohort were exclud-
ed. The endometrial cancer samples were classified into low-GREM1 
group and high-GREM1 group according to the medium value of 
GREM1 expression. Leveraging the limma R package, the differ-
ential expression analysis was performed to screen out the DEGs 
between the low-GREM1 and high-GREM1 groups. The screening 
criteria for DEGs were set as |log2Fold Change| > 1 and adjusted p 
< 0.05.20 Then, the pheatmap R package was used to showcase the 
differential expression pattern of DEGs among the low-GREM1 and 
high-GREM1 groups. Moreover, we conducted Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis on these 
screened DEGs, and the enriched pathways with q < 0.05 were con-
sidered significant.20 The CBNplot R package was used to construct 
a regulatory network of the 10 most enriched KEGG pathways with 
the Bayesian network and gene expression profile.21

Weighted gene co-expression network analysis
The WGCNA R package was used to generate a gene co-ex-
pression network using the expression profile of the training co-
hort.22 Sample labels in the cohort were previously grouped into 
low-GREM1 and high-GREM traits. The optimal soft threshold 
power (β = 1–20) was initially calculated to determine the scale-
free topology of the network. Then, we constructed a weighted 
adjacency matrix and transformed it into a topological overlap 
matrix (TOM). Moreover, the dissTOM was obtained for hierar-
chical clustering. The dynamic tree-cutting method was adopted to 
identify various modules clustered by gene similarity. Herein, we 
set minModuleSize to 60 and MEDissThres to 0.3. Subsequently, 
we related the recognized modules to two traits (low-GREM1 and 
high-GREM1). Genes in the module that had high relevance with 
high-GREM1 were retained for subsequent analysis.

Mfuzz clustering analysis
The Mfuzz R package uses the fuzzy c-means clustering algorithm 

to cluster GREM1 expression patterns.23 We first obtained distinct 
clustering patterns according to the ascending GREM1 expression. 
To investigate the relationship of clustering patterns with GREM1, 
each sample of the expression profile was subjected to single sam-
ple Gene Set Enrichment Analysis (ssGSEA) to assign the scores 
of clustering patterns.24 We further explored the clustering charac-
teristics between low-GREM1 and high-GREM1 expression. The 
correlation of clustering patterns and GREM1 was investigated, 
with the patterns closely related to GREM1 selected for further 
analysis.

Potential biological functions, pathways, and diseases of the 
hub genes
We intersected the genes in the WGCNA module and Mfuzz clus-
tering patterns highly related to GREM1 with DEGs, thus gaining 
the hub genes linked to GREM1 expression. To explore the poten-
tial biological functions, pathways, and associated diseases of hub 
genes, gene ontology (GO), KEGG, and disease ontology (DO) 
enrichment analyses were conducted using the clusterProfiler and 
DOSE R packages.

Key genes generated from the machine learning-based combi-
nations and protein-protein interaction network
To perform feature selection on hub genes, we integrated 12 ma-
chine-learning algorithms and 113 algorithm combinations. The 
machine learning algorithms for integration included absolute 
shrinkage and selection operator, ridge, elastic network, stepwise 
multiple generalized linear model, support vector machine, a gen-
eralized linear model with likelihood-based boosting (GLMBoost), 
linear discriminant analysis, partial least squares regression for 
generalized linear models, RandomForest, gradient boosting, eX-
treme gradient boosting, and NaiveBayes. One algorithm was used 
to select features and another was used to construct a classifica-
tion model using the leave-one-out cross-validation framework.11 
For each model integration, area under curve (AUC) scores within 
the training and test cohort were calculated under cross-validation. 
The classification model performed with the highest AUC score 
was considered optimal, thus the selected features for the model 
establishment were then obtained. Furthermore, the String data-
base was used to construct the feature gene-dominated Protein-
Protein Interaction (PPI) network, and the top 10 key genes with 

Table 2.  Datasets used for pan-cancer analysis

Tool/database for 
pan-cancer analysis Dataset list

TIMER TCGA-ACC, TCGA-BLCA, TCGA-BRCA, TCGA-CESC, TCGA-CHOL, TCGA-COAD, TCGA-DLBC, TCGA-ESCA, 
TCGA-GBM, TCGA-HNSC, TCGA-KICH, TCGA-KIRC, TCGA-KIRP, TCGA-LAML, TCGA-LGG, TCGA-LIHC, TCGA-
LUAD, TCGA-LUSC, TCGA-MESO, TCGA-OV, TCGA-PAAD, TCGA-PCPG, TCGA-PRAD, TCGA-READ, TCGA-SARC, 
TCGA-SKCM, TCGA-STAD, TCGA-TGCT, TCGA-THCA, TCGA-THYM, TCGA-UCEC, TCGA-UCS, TCGA-UVM.

UCSC GBM, GBMLGG, LGG, UCEC, BRCA, CESC, LUAD, ESCA, STES, KIRP, KIPAN, COAD, PRAD, STAD, HNSC, 
KIRC, LUSC, LIHC, WT, SKCM, BLCA, THCA, READ, OV, PAAD, TGCT, UCS, LAML, PCPG, ACC, KICH, CHOL.

UALCAN Breast cancer, colon cancer, uterine corpus endometrial carcinoma, lung adenocarcinoma, pancreatic  
adenocarcinoma, head and neck squamous carcinoma, glioblastoma.

ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multi-
forme; GBMLGG, glioma; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIPAN, Pan-kidney; KIRC, kidney renal clear cell carcinoma; KIRP, kidney 
renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate 
adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; STES, stomach and esophageal carcinoma; 
TCGA, The Cancer Genome Atlas; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, Thymoma; UALCAN, The University of ALabama at Birmingham CANcer; 
UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UCSC, The University of California Santa Cruz; UVM, uveal melanoma; WT, high-risk Wilms tumor.
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high betweenness with GREM1 in the network were obtained by 
the Cytoscape software (version 3.9.1).25,26 We then visualized 
the chromosomal locations of the 10 key genes. Moreover, we as-
sessed the principal component analysis (PCA) scores, expression 
distributions in low-GREM1 and high-GREM1 groups, and cor-
relations of key genes within the training and test cohorts.

Validation of key genes for distinguishing from the low-GREM1 
and high-GREM1 groups
To assess whether the screened key genes could accurately distin-
guish from the low-GREM1 and high-GREM1 groups, the glmnet 
R package was first used to construct a logistic regression model 
using key genes within the training cohort. The model was illustrat-
ed in a nomogram developed with the rms R package. The ability 
of the model to classify low-GREM1 and high-GREM1 groups was 
then systemically assessed by AUC scores, calibration curves, and 
decision curve analysis (DCA) in the training and test cohorts.27

Potential pathways and regulatory networks of key genes with 
GREM1
The regulatory relationship between GREM1 and key genes was 
inferred through the CBNplot R package. To further investigate the 
key gene-regulated pathways in endometrial cancer, the cluster-
Profiler R package was used to conduct KEGG enrichment analy-
sis of the key genes. The enriched KEGG pathways with q val-
ues <0.05 were considered significant differences.20 Additionally, 
we depicted the regulatory network of pathways, and the genes 
enriched in the core pathways with more edges and interaction 
strengths using the CBNplot R package. To verify the in-silico re-
sults, the experimental evidence at the protein level was retrieved 
from the HPA database to show the expression of the key genes in 
endometrial cancer tissues.

Correlation of key genes with GREM1 with immune infiltration 
cells
Cell-type Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) and ssGSEA were applied to estimate 
infiltration degrees of different immune cell types, in which CIB-
ERSORT performs deconvolution and ssGSEA marks enriched 
scores on bulk RNA-seq data using immune-cell signature.28,29 
The permutations of CIBERSORT were set as 1,000 and the cal-
culated results with p < 0.05 were retained for subsequent analy-
sis.30 We explored the infiltration patterns of immune cells in low-
GREM1 and high-GREM1 groups. The relationship between key 
genes and immune-cell infiltration was then examined by Spear-
man’s correlation approach.

Statistical analysis
Statistical analysis was performed with R programming lan-
guage (version 4.2.0). Wilcoxon test was performed to evaluate 
the mRNA expression of GREM1 in tumor tissue compared with 
normal tissues. Wilcoxon test was also carried out to investigate 
the expression distribution of GREM1 in different groups based 
on clinicopathological characteristics, including age, tumor grade, 
T/N/M stage, and tumor stage. An unpaired t-test was used to esti-
mate the differential expression of GREM1 protein associated with 
key genes, and immune-cell infiltration levels in the two groups. 
Log-rank test was used to analyze differences in OS between 
the low-GREM1 and high-GREM1 expression groups. Spear-
man’s correlation method was adopted to analyze the association 
of GREM1 and Mfuzz clustering patterns and Pearson’s method 
for hub gene co-expression relationships. Spearman’s correlation 

analysis was performed to show whether there was a close rela-
tionship between extracellular matrix (ECM) signatures and the 
expression of GREM1 in different cancers, and p < 0.05 was con-
sidered statistically significant.

Results

GREM1 was downregulated in different types of cancer and 
endometrial cancer
First, the expression profiles of GREM1 across different cancer 
types were investigated via TIMER. Figure 1a shows that lower 
expression levels of GREM1 were observed in glioblastoma 
multiforme (GBM), KICH, KIRC, KIRP, THCA, and UCEC (all 
< 0.05). Next, we found that GREM1 was significantly under-
expressed in 14 types of cancer compared with normal tissue in 
the TCGA target GTEx datasets, including GBM, glioma (GBM-
LGG), low-grade glioma (LGG), UCEC, cervical squamous cell 
carcinoma and endocervical adenocarcinoma, KIRP, pan-kidney, 
KIRC, high-risk Wilms tumor, skin cutaneous melanoma, THCA, 
uterine carcinosarcoma, adrenocortical carcinoma, and KICH (Fig. 
1b). UALCAN was used to explore the protein expression levels 
of GREM1 in seven cancer types, which showed significant down-
regulation of GREM1 in UCEC and glioblastoma (all p < 0.05; 
Fig. 1c). We also observed significant downregulation of GREM1 
in endometrial cancer compared with control tissue (all p < 0.05; 
Fig. 1d and f). Immunohistochemical staining patterns of GREM1 
in normal endometrial tissue and endometrial cancer tissue were 
retrieved from the HPA database. The staining scores shown in 
Figure 1g and h show that GREM1 expression was significantly 
lower in endometrial cancer than in normal endometrial tissue. 
These results show that GREM1 was downregulated in endome-
trial cancer.

High expression of GREM is related to poor prognosis and clin-
icopathological characteristics
Leveraging the 12 tumors with differential expression patterns 
compared with normal controls in the TCGA database, we ana-
lyzed the effect of GREM1 expression on tumor prognosis and 
clinicopathological characteristics. To evaluate whether the ex-
pression of GREM1 is related to the prognosis of tumor patients, 
K-M survival curves and log-rank tests compared differences in 
OS in groups with low-GREM1 and high-GREM1 expression 
(Fig. 2). As shown in Figure 2e (LUSC), Figure 2i (KIRC), Fig-
ure 2j (KIRP), and Figure 2l (UCEC), OS was shorter in groups 
with high-GREM1 expression than it was in groups with low-
GREM1 expression (all p < 0.05). These results indicate that the 
prognostic outcome of tumor patients with high GREM1 expres-
sion was poor. Additionally, we investigated the relationship be-
tween GREM1 expression and clinicopathological characteris-
tics in 11 tumor types (excluding GBM datasets with insufficient 
clinicopathological features). Figure 3, shows the expression dis-
tribution of GREM1 in groups with diverse clinicopathological 
characteristics. Interestingly, we observed that the expression of 
GREM1 was closely linked to at least one characteristic in dif-
ferent tumor types, including BRCA (Fig. 3a), HNSC (Fig. 3c), 
LUSC (Fig. 3e), STAD (Fig. 3f), KIRC (Fig. 3h), KIRP (Fig. 3i), 
THCA (Fig. 3j), and UCEC (Fig. 3k). Compared with patients 
with lower N-stage tumors, those with advanced N-stage had sig-
nificantly different GREM1 expression levels in BRCA (Fig. 3a), 
HNSC (Fig. 3c), LUSC (Fig. 3e), KIRC (Fig. 3h), and THCA 
(Fig. 3j). Additionally, the expression of GREM1 was upregu-
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lated in advanced T-stage patients with STAD (Fig. 3f), KIRC 
(Fig. 3h), KIRP (Fig. 3i), and THCA (Fig. 3j). Regarding tumor 
grading and staging, the over-expression patterns of GREM1 in 
advanced grade and stages were observed in STAD (Fig. 3f), 
KIRC (Fig. 3h), KIRP (Fig. 3i), THCA (Fig. 3j), and UCEC (Fig. 
3k). It is noteworthy that endometrial cancer young patients with 
advanced tumor stages had higher GREM1 expression. Taken to-
gether, these results show that the high expression of GREM1 is 
relevant to poor prognosis and worse clinicopathological features 
of LUSC, KIRC, KIRP, and UCEC, which indicate its pivotal 
function in tumor development.

Identification of DEGs in low and high GREM1 groups
To identify the high GREM1-related genes, we first divided 554 
endometrial cancer samples into low-GREM1 group (n = 277) 
and high-GREM1 group (n = 277) according to the medium ex-
pression value of GREM1 and performed DEGs analysis. We 
screened out a total of 65 DEGs, of which 64 genes were up-
regulated and one gene was downregulated in the high-GREM1 
group (Fig. 4a). The heatmap shows a distinct expression pattern 
of 65 DEGs between the low-GREM1 and high-GREM1 groups 
(Fig. 4b). KEGG enrichment analysis showed that upregulated 
DEGs participated in the organization of the extracellular ma-

trix, integrin cell-surface interactions, ECM proteoglycans, col-
lagen chain trimerization, and degradation of the extracellular 
matrix (Fig. 4c). We further depicted the interaction network of 
the top 10 KEGG enriched pathways through the Bayesian infer-
ence (Fig. 4d), indicating the core roles of extracellular matrix 
organization, integrin cell-surface interactions, ECM proteo-
glycans, and degradation of the extracellular matrix with more 
edges and gene counts. These results showed that upregulation 
DEGs may highly cooperate with the extracellular matrix in en-
dometrial cancer.

Crucial module with GREM1 by WGCNA
To further identify the high GREM1-related genes, WGCNA was 
carried out to develop a gene co-expression network and identify 
genes from the high GREM1-correlated module. First, the opti-
mal soft threshold power (β = 2) was determined to generate a 
gene co-expression network (Fig. 5a). Then, seven modules were 
identified after the dynamic tree cut and merge (Fig. 5b). We then 
related the traits (low-GREM1 and high-GREM1 groups) to the 
modules, obtaining a brown module with the highest positive as-
sociation to the high-GREM1 group (R = 0.4, p < 0.001; Fig. 5c). 
A significant positive correlation of gene significance (GS) and 
module membership (MM) was observed in the ME brown module 

Fig. 1. Expression pattern of GREM1 at the pan-caner level. (a) mRNA expression level of GREM1 in pan-cancer from the TCGA database. (b) mRNA expression 
level of GREM1 in pan-cancer from the TCGA target GTEx datasets. (c) Protein expression level of GREM1 in pan-cancer from the CPTAC database. (d) Down-
regulation of GREM1 at mRNA level in endometrial cancer tissues from the TCGA database. (e) Downregulation of GREM1 at mRNA level in endometrial cancer 
tissues from the TCGA target GTEx datasets. (f) Downregulation of GREM1 at the protein level in endometrial cancer tissue from the CPTAC database. (g) Im-
munohistochemical staining of GREM1 in normal endometrial tissue from the HPA database. (h) Immunohistochemical staining of GREM1 in endometrial cancer 
tissue from the HPA database. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). ACC, adrenocortical carcinoma; CESC, cervical squamous cell carcinoma 
and endocervical adenocarcinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium; GBM, glioblastoma multiforme; GREM1, Gremlin-1; GTEx, genotype-
tissue expression; HPA, Human Protein Atlas; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, low-grade glioma; PAAD, 
pancreatic adenocarcinoma; TCGA, The Cancer Genome Atlas; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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(R = 0.51, p < 0.001; Fig. 5d), which suggested the genes from the 
ME brown module were associated with GREM1 and the most sig-
nificant elements of the modules correlated with GREM1. Finally, 
we obtained 1,043 genes from the ME brown module for further 
analysis.

Critical patterns with GREM1 by Mfuzz clustering analysis
Mfuzz clustering analysis was first conducted according to the 
ascending GREM1 expression levels, combined with ssGSEA 
marked clustering scores for expression characteristics, to screen 
out GREM1 a highly positive expression pattern. A total of 50 ex-
pression patterns clustering on GREM1 expression were obtained 
(Fig. 6a and b). We then carried out ssGSEA to classify tumor sam-
ples into distinct patterns with the identified Mfuzz clustering re-
sults, and each sample was assigned to a certain clustering pattern. 
Subsequently, Spearman’s correlation between distinct clustering 
patterns and GREM1 was investigated (Fig. 6c). Three critical pat-
terns significantly positive for GREM1 were then identified (R > 

0.4, p < 0.001; Fig. 6d, e, and f), in which 901 genes obtained from 
these patterns were obtained for further selection.

Inference of biological functions, pathways, and diseases of the 
hub genes
We took the intersection of 64 upregulated DEGs, 1,043 genes 
in the ME brown module, and 901 genes in three critical cluster-
ing patterns as 57 hub genes with GREM1 (Fig. 7a). GO, DO, 
and KEGG enrichment analyses were then performed to explore 
the potential biological functions, pathways, and diseases of the 
selected hub genes. As shown in Figure 7b, the majority of the 
hub gene-enriched GO terms were related to extracellular matrix 
and collagen, mainly including extracellular matrix organization, 
collagen-containing extracellular matrix, and extracellular ma-
trix structural constituents. The top 20 significant terms of DO 
enrichment analysis are shown in Figure 7c. Notably, the hub 
genes were enriched in several DO terms involving gynecologic 
tumors, such as uterine benign neoplasm, uterine fibroid, female 

Fig. 2. K-M curves of OS in low-GREM1 and high-GREM1 expression groups in 12 cancer types. (a) BRCA. (b) CHOL. (c) HNSC. (d) LUAD. (e) LUSC. (f) STAD. (g) 
GBM. (h) KICH. (i) KIRC. (j) KIRP. (k) THCA. (l) UCEC. Red marks indicate a statistical difference. BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma; 
HNSC, head and neck squamous cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; STAD, stomach adenocarcinoma; GBM, 
glioblastoma multiforme; GREM1, Gremlin-1; K-M, Kaplan-Meier; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal 
papillary cell carcinoma; OS, overall survival; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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Fig. 3. Expression of GREM1 in different clinicopathological characteristics. (a) BRCA. (b) CHOL. (c) HNSC. (d) LUAD. (e) LUSC. (f) STAD. (g) KICH. (h) KIRC. 
(i) KIRP. (j) THCA. (k) UCEC. Red marks indicate a statistical difference in any one characteristic. GREM1, Gremlin-1; BRCA, breast invasive carcinoma; CHOL, 
cholangiocarcinoma; HNSC, head and neck squamous cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; STAD, stomach 
adenocarcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; THCA, thyroid carcinoma; 
UCEC, uterine corpus endometrial carcinoma.
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reproductive organ benign neoplasm, and reproductive organ be-
nign neoplasm, which indicated the linkage of hub genes and uter-
ine tumors. Moreover, the KEGG enrichment analysis suggested 
that the upregulation of hub genes may participate in extracellu-
lar matrix-related pathways, including ECM-receptor interaction, 
focal adhesion, and proteoglycans in cancer (Fig. 7d). Figure 7e 
further depicts the interaction of enriched genes and the top five 
significant pathways, in which FN1 and THBS1 were the common 
genes enriched in ECM-receptor interaction, focal adhesion, and 
proteoglycans in cancer.

Machine learning-based combination and PPI network identi-
fied key genes
A total of 113 machine learning-based integration was fitted to 
the training and test cohorts via the leave-one-out cross-validation 
framework. As shown in Figure 8a, the combination of GLM-
Boost and RF was the optimal model performed with the high-
est average AUC score (0.698) in the training and test cohorts. 
Subsequently, we obtained 12 genes (FAP, THBS1, POSTN, IN-
HBA, ASPN, COL3A1, DES, IGFBP5, COL8A1, FN1, COL5A2, 

Fig. 4. Identification of DEGs in low-GREM1 and high-GREM1 expression groups. (a) Volcano diagram of 65 DEGs, where the blue dot represents downregu-
lated DEGs and red dots represent upregulated DEGs. (b) Heatmap of the expression of 65 DEGs across the samples. (c) Top 10 enrichment KEGG pathways 
of 65 DEGs. (d) BN plot of the interactions of the top 10 KEGG enrichment pathways. BN, Bayesian network; DEGs, differentially expressed genes; GREM1, 
Gremlin-1; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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EMILIN1) screened by the model. We then selected the 10 genes 
with the highest betweenness in the PPI network of GREM1 (Fig. 
8b), thus identifying a final set of 10 key genes highly associated 
with GREM1 (FAP, THBS1, POSTN, INHBA, ASPN, COL3A1, 
IGFBP5, COL8A1, FN1, COL5A2). The chromosomal locations 
of GREM1 and 10 genes are shown in Figure 8c. The PCA score 
plots showing the 10 genes clearly distinguish the low-GREM1 
and high-GREM1 groups within the training and test cohorts (Fig. 
8d and e). The significant expression differences of THBS1, ASPN, 
COL3A1, COL5A2, COL8A1, INHBA, POSTN, and FAP between 
low-GREM1 and high-GREM1 groups in the training and test co-
horts are shown in Figure 8f and g. Additionally, the positive cor-
relation patterns of GREM1 and the 10 genes within the training 
and test cohorts are shown in Figures 8h and i.

Assessment of key genes for distinguishing the low-GREM1 and 
high-GREM1 groups
We constructed logistic regression models within the training and 
test cohorts to assess the classification performance of the 10 genes 
in low- and high-GREM1 groups. The nomograms intuitively vis-
ualized the logistic regression model established in the 10 genes 
within the training cohort (Fig. 9a). The excellent differentiation 

on low- and high-GREM1 groups of the models was evaluated by 
the AUC scores (all AUC > 0.8; Fig. 9b and c). In addition, the 
calibration curves showed a minor error between the predicted 
probability and actual probability, showing the high classification 
accuracies of the models (Fig. 9d and e). The DCA curves showed 
that the model deviated from the none and all baselines below the 
high-risk threshold, which ranged from 0 to 1 and further dem-
onstrated the classification ability and certain application of the 
models in the training and test cohorts (Fig. 9f and g). These re-
sults suggest the critical role of 10 genes closely associated with 
GREM1 in endometrial cancer.

Inference of the pathways regulated by key genes and GREM1
The Bayesian inference-generated regulation network between 
GREM1 and key genes is shown in Figure 10a. The network 
demonstrated the intricate crosstalk between key genes that domi-
nated through GREM1 as the upstream regulator. To reveal the 
potential pathways regulated by 10 genes and GREM1, we car-
ried out KEGG enrichment analysis. Figure 10b shows the top 12 
significant pathways of the 10 genes and GREM1. Among the en-
riched pathways, many extracellular matrix and collagen-related 
pathways were observed, such as integrin cell-surface interactions, 

Fig. 5. Construction of a weighted gene co-expression network. (a) Determination of optimal soft threshold power for scale-free networks. (b) Dendrogram 
of genes with dissimilarity clustered by dynamic tree shearing. (c) Relationship of seven merged modules and traits (low-GREM1 and high-GREM1 expression 
groups). A brown module associated the high-GREM1 expression group was observed (R = 0.4, p < 0.001). (d) Intramodular analysis shows the correlation of 
GS and MM in the high-GREM1 expression group. GREM1, Gremlin-1; GS, gene significance; MM, module membership.
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Fig. 6. Screening of Mfuzz expression-clustering modules related to GREM1. (a) A total of 50 Mfuzz clustering modules on the ascending expression of 
GREM1. (b) Significant distribution of ssGSEA score on clustering modules across the low-GREM1 and high-GREM1 expression groups. (c) Correlation heat-
map of clustering modules and GREM1. (d) Significant correlation between GREM1 and clustering module 10. (e) Significant correlation of GREM1 and clus-
tering module 25. (f) Significant correlation of GREM1 and clustering module 36. GREM1, Gremlin-1; ssGSEA, single sample gene set enrichment analysis.
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extracellular matrix organization, nonintegrin membrane-ECM 
interactions, ECM proteoglycans, degradation of the extracel-
lular matrix, collagen chain trimerization, assembly of collagen 
fibrils and other multimeric structures, and collagen degradation. 
We performed Bayesian inference of the enrichment pathways 
and gene expression profile to elucidate the pathway interactions. 
We obtained an interaction network of the enriched 12 pathways 
(Fig. 10c) in which integrin cell-surface interactions (Fig. 10d), 
extracellular matrix organization (Fig. 10e), ECM proteoglycans 
(Fig. 10f), degradation of the extracellular matrix (Fig. 10g), and 
collagen degradation (Fig. 10h) were cores with more edges and 
similarities in the network. The enriched gene interactions in the 
core pathway are also shown. Generally, five enriched genes (FN1, 
COL3A1, THBS1, COL5A2, and COL8A1) were observed in the 
networks. Of these genes, FN1 and THBS1 proved to be signifi-
cant in the previous KEGG enrichment analysis, suggesting they 
have potential crucial roles along with GREM1 in endometrial 
cancer. The HPA database was searched to obtain experimental 
evidence of the expressions of these five common enriched key 
genes at the protein level. Immunohistochemical analysis of four 
genes, COL3A1, COL8A1, FN1, and THBS1, were obtained (Fig. 

10i–l). According to the staining and intensity levels (Fig. 10i, k 
and l), upregulation of COL3A1, FN1, and THBS1 was observed 
in endometrial cancer tissue and COL8A1 protein was not detected 
(Fig. 10j). The experimental evidence verified the in-silico results 
and further indicate transactivation of these key genes in endo-
metrial cancer, particularly over-expression of COL3A1, FN1, and 
THBS1 at the protein level. To gain insight into the GREM1-regu-
lated mechanism, we also investigated the relationship of fibrotic 
status and GREM1 expression in 12 types of cancer. Leveraging 
the ECM signatures reflecting the fibrotic status, we observed that 
it was positively correlated with GREM1 expression of (all R > 
0, p < 0.001) in these cancer types (Fig. 11). These results further 
showcased the role of GREM1 in tumor fibrosis of various cancers.

Expression profiles of immune infiltration cells and correlation 
analysis
To investigate whether the immune infiltration cells varied in the 
low-GREM1 and high-GREM1 groups, we performed CIBER-
SORT and ssGSEA of the gene expression profiles. The results 
showed the expression profiles of immune infiltration cells (Fig. 
12a and b), in which CD8+ T cells, CD4+ memory resting T cells, 

Fig. 7. Potential biological functions, associated diseases, and signaling pathways of 57 hub genes. (a) Venn diagram of 57 overlapping genes among 65 
DEGs, 1043 genes in ME brown module by WGCNA, and 901 genes obtained from three clustering modules. (b) GO enrichment analysis of hub genes. (c) DO 
enrichment analysis of hub genes. (d) Heatmap depicting the enrichment pathways including hub genes. (e) Chord diagram of the top five KEGG pathways 
interacting with the enriched genes. AGE-RAGE, advanced glycation end products; cGMP-PKG, cyclic guanosine monophosphate-protein kinase G; cAMP, 
cyclic adenosine monophosphate; DEGs, differentially expressed genes; DO, disease ontology; ECM, extracellular matrix; GO, gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; PI3k-Akt, phosphatidylinositol 3 kinase protein kinase B; TGF-β, transforming growth factor-beta; WGCNA, weighted 
gene co-expression network analysis.
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and M0 macrophages were the main cell types that infiltrated en-
dometrial cancer (Fig. 12a). The infiltration of 10 immune cells 
in the low-GREM1 and high-GREM1 groups was evaluated by 
CIBERSORT (Fig. 12c). Regarding the ssGSEA results, a total of 

16 immune cells had significantly different expression in the low- 
and high-GREM1 groups (Fig. 12d). Additionally, correlation of 
immune-cell infiltration and 11 genes (including GREM1) was ex-
plored (Fig. 12e and f). Interestingly, infiltration of mast cells was 

Fig. 8. Feature selection of 57 genes with integration of machine learning algorithms. (a) A total of 113 integrations of machine learning algorithms se-
lected 57 feature genes; AUC scores for each integration were then calculated. (b) PPI network of GREM1 and 10 core genes identified by the betweenness 
algorithm. (c) Chromosomal locations of GREM1 and 10 core genes. (d) Three-dimensional PCA score plot showing the 10 core genes that distinguished the 
low-GREM1 and high-GREM1 groups in the training cohort. (e) Three-dimensional PCA plot showing the 10 core genes that distinguished the low-GREM1 
and high-GREM1 groups in the and test cohort. (f) Expression of 10 core genes in the low-GREM1 and high-GREM1 groups in the training cohort. (g) Expres-
sion of 10 core genes in the low-GREM1 and high-GREM1 groups in the test cohort. (h) Correlation heatmap of 10 core genes with GREM1 in the training 
cohort. (i) Correlation heatmap of 10 core genes with GREM1 in the test cohort. AUC, area under curve; GREM1, Gremlin-1; PCA, principal component 
analysis; PPI, protein-protein interaction; TCGA, The Cancer Genome Atlas.
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upregulated in the high-GREM1 groups and was positively cor-
relation with ASPN, COL3A1, FAP, GREM1, IGFBP5, POSTN, 
THBS1, which suggested the mast cells were highly influenced by 
GREM1 in endometrial cancer.

Discussion
GREM1 involvement in carcinogenesis has been investigated and 
is seen as a prospective therapeutic target in various malignan-
cies.7–10,31 Nevertheless, the role of GREM1 in endometrial cancer 
and its association with immune cells is not well understood. Herein, 
a comprehensive bioinformatics analysis combined with a machine 
learning-based combination was applied to reveal the potential 
mechanism of GREM1 in endometrial cancer. Inspired by evidence 
that GREM1 over-expression inhibits epithelial-to-mesenchymal 
transition in pancreatic cancer,9 we wondered whether a similar 
mechanism occurred in endometrial cancer. We focused the analy-
sis on the expression profiles of cancer tissues with high-GREM1 
expression in the TCGA and GEO databases. We first found down-
regulation of GREM1 mRNA and protein in endometrial cancer, 
which was consistent with the expression pattern previously re-
ported in pancreatic cancer.9 Downregulation of GREM1 expres-
sion was observed in glioblastoma. Although we found overall 
downregulation of GREM1 in endometrial cancer, the heterogeneity 
of cancer exists, suggesting a certain cell population with a higher 
GREM1 expression pattern. Additionally, we performed prognosis 
and clinicopathological analysis of GREM1 in 12 cancer types in 
the TCGA database. The expression of GREM1 was significantly 
different from that in normal controls (up/downregulation pattern). 
The results indicated that high expression of GREM1 predicted poor 
prognosis (shorter OS) and clinicopathological features (advanced 
tumor grade/stage) in lung squamous cell carcinoma, kidney renal 

clear cell carcinoma, kidney renal papillary cell carcinoma, and en-
dometrial carcinoma. We thus suggest that the patients with tumors 
that have high GREM1 expression have poor clinical outcomes, in-
dicating that GREM1 contributes to tumor progression.

Then, we classified the endometrial cancer samples into low-
GREM1 and high-GREM1 groups. We screened out a total of 65 
DEGs (64 upregulated genes and one downregulated gene) be-
tween these two groups. Subsequently, WGCNA was performed 
to discern the ME brown module highly positively linked to high-
GREM1 trait, of which 1,043 genes were included. Together with 
ssGSEA scoring and correlation analysis, Mfuzz clustering was 
also conducted to screen out three high-GREM1-related gene ex-
pression patterns containing 901 genes. We took the intersection 
of the 64 upregulated DEGs, 1,043 genes identified by WGCNA, 
and Mfuzz-selected 901 genes. We observed a set of 57 overlap-
ping genes, indicating that the prefeature selection procedure using 
multiple bioinformatics methods was reliable and accessible. In 
addition, we conducted DO, GO, and KEGG enrichment analy-
sis on the selected 57 hub genes to investigate the biological pro-
cesses and pathways in endometrial cancer. Interestingly, the hub 
genes were enriched in uterine benign neoplasms, uterine fibroids, 
female reproductive organ benign neoplasms, and reproductive 
organ benign neoplasms, suggesting an association between the 
hub genes and uterine carcinomas. Furthermore, GO and KEGG 
analysis indicated that the hub genes were enriched in extracellular 
matrix-related terms, including extracellular matrix organization, 
collagen-containing extracellular matrix, ECM-receptor interac-
tion, focal adhesion, and proteoglycans in cancer. We speculate 
that the hub GREM1 genes participate in ECM-related pathways. 
Deregulated ECM dynamics, such as collagen deposition or an 
increase in ECM stiffness,32 are signatures of tumor proliferation 
and metastasis. It is well known that ECM is a complex and dy-
namic environment mainly composed of collagen, proteoglycans, 

Fig. 9. Classification performance of 10 key genes in low-GREM1 and high-GREM expression groups within the training and test cohorts. (a) Nomograph 
of the logistic regression model of 10 key genes within the training cohort. (b) ROC curve of model classification accuracy in low-GREM1 and high-GREM 
expression groups in the training cohort. (c) ROC curve of model classification accuracy of low- and high-GREM expression groups in the test cohort. (d) Cali-
bration plot of the model predictive and actual classified probabilities in the training cohort. (e) Calibration plot of the model predictive and actual classified 
probabilities in the test cohort. (f) DCA curve of the application of the model distinguishing the low-GREM1 and high-GREM1 groups in the training cohort; 
(g) DCA curve of the application of the model distinguishing the low- and high-GREM1 groups in the test cohort. AUC, area under curve; DCA, decision curve 
analysis; GREM1, Gremlin-1; ROC, receiver operating characteristic.
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Fig. 10. Exploration of the potential pathways and pathway interactions regulated by 10 core genes. (a) Gene regulatory networks of GREM1 and key 
genes. (b) Top 12 KEGG enrichment pathways of 10 core genes. (c) Interaction network of 12 enrichment pathways. (d) Gene regulatory networks in integrin 
cell-surface interactions. (e) Gene regulatory networks in extracellular matrix organization. (f) Gene regulatory networks in ECM proteoglycans. (g) Gene 
regulatory networks in degradation of the extracellular matrix. (h) Gene regulatory networks in collagen degradation. (i) Immunohistochemical staining of 
COL3A1 in endometrial cancer tissue. (j) Immunohistochemical staining of COL8A1 in endometrial cancer tissue. (k) Immunohistochemical staining of FN1 
in endometrial cancer tissue. (l) Immunohistochemical staining of THBS1 in endometrial cancer tissue. ECM, extracellular matrix; GREM1, Gremlin-1; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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laminin, and fibronectin.33 Thus, we also wondered which specific 
ECM composition was a great contribution or highly correlated to 
the higher level of GREM1, further exploring the underlying regu-
latory relationship with GREM1 in endometrial cancer.

To define the underlying molecular mechanism of GREM1 
more precisely in endometrial cancer, feature selection on the hub 
genes was still needed. Herein, the machine learning-based inte-
grative procedure was taken for feature selection. We obtained a 
total of 12 genes (FAP, THBS1, POSTN, INHBA, ASPN, COL3A1, 
DES, IGFBP5, COL8A1, FN1, COL5A2, and EMILIN1) via best-
performance algorithm integration (GLMBoost target RF) with the 
highest AUC scores. To explore whether the functional associa-
tions between the 12 genes and GREM1 exist, we constructed a PPI 
network interacting with 12 genes and GREM1. Using Cytoscape 
software, we calculated the betweenness of 12 genes and GREM1 
in the network. DES and EMILIN1, with zero betweenness were 
excluded, and a PPI network composed of 10 genes and GREM1 
was then visualized. We thus obtained a final set of 10 genes (FAP, 
THBS1, POSTN, INHBA, ASPN, COL3A1, IGFBP5, COL8A1, 
FN1, and COL5A2), which are considered as key GREM1 genes. 

Using three-dimensional PCA score plots, we observed the clas-
sification performances of key genes in low-GREM1 and high-
GREM1 groups. The elevated expression of key genes in the high-
GREM1 groups was then demonstrated, following their positive 
expression correlations with GREM1, which implies that the co-
expressions of key genes and GREM1 exist in endometrial cancer.

To systemically assess the classification abilities of key genes 
from the low-GREM1 and high-GREM1 groups, we established lo-
gistic regression models, following ROC curves, calibration curves, 
and DCA curves as evaluation indexes. We noted robust AUC 
scores, strong calibrations, and distinct utility of the discrimina-
tion models within the training and test cohorts. These results show 
that the key genes were clearly distinguished in the low-GREM1 
and high-GREM1 groups, indicating their expression was similar 
to that of GREM1. The key genes were subjected to KEGG en-
richment analysis, together with conducting BN inference on the 
enriched pathways and gene expression patterns. Interestingly, the 
key genes were also enriched in extracellular matrix-related path-
ways, especially those related to ECM structural constituent and 
dynamic changes. Through the pathway interaction based on BN 

Fig. 11. Correlation of fibrotic status and GREM1 expression in 12 cancer types. (a) BRCA. (b) CHOL. (c) HNSC. (d) LUAD. (e) LUSC. (f) STAD. (g) GBM. (h) 
KICH. (i) KIRC. (j) KIRP. (k) THCA. (l) UCEC. Red marks indicate a statistical difference. BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma; GBM, 
glioblastoma multiforme; GREM1, Gremlin-1; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell 
carcinoma; KIRP, kidney renal papillary cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; STAD, stomach adenocarcinoma; 
THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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Fig. 12. Inference of immune-cell composition on the expression profile through CIBERSORT and ssGSEA algorithms. (a) Bar plot showing the relative composi-
tion of 22 kinds of immune cells in the low-GREM1 and high-GREM1 expression groups through CIBERSORT. (b) Heatmap of the relative infiltration abundance 
of 28 kinds of immune cells in the low-GREM1 and high-GREM1 expression groups by ssGSEA. (c) Levels of immune-cell infiltration in the low-GREM1 and 
high-GREM1 expression groups compared via CIBERSORT. (d) Levels of immune-cell infiltration in low-GREM1 and high-GREM1 expression groups compared via 
ssGSEA. (e) Correlation heatmap of 10 key genes and the infiltration of immune cells based on the CIBERSORT results. (f) Correlation heatmap of 10 core genes 
and the infiltration levels of immune cells based on the ssGSEA results. CIBERSORT, Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts; 
GREM1, Gremlin-1; ssGSEA, single sample gene set enrichment analysis. GREM1, Gremlin-1; ssGSEA, single sample gene set enrichment analysis.
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inference, we found integrin cell-surface interactions, extracellular 
matrix organization, ECM proteoglycans, degradation of the extra-
cellular matrix, and collagen degradation were core pathways. We 
then investigated the gene interactions of the core pathways and ob-
served five common genes (FN1, COL3A1, THBS1, COL5A2, and 
COL8A1) enriched in the interactions. Notably, the collagen genes 
COL3A1, COL5A2, and COL8A1 almost occurred in the enriched 
pathways, suggesting the critical role of collagen in ECM-related 
pathways. Moreover, we obtained immunohistochemical staining 
results of FN1, COL3A1, THBS1, and COL8A1 in endometrial can-
cer from the HPA database, which was as external experimental 
evidence supporting our analysis. These results showcased the el-
evated expression of FN1, COL3A1, and THBS1 proteins in endo-
metrial cancer, which strengthened the in-silico conclusions.

Recent studies have demonstrated that COL3A1 over-expres-
sion leads to poor prognosis or promotes cancer cell progression in 
several malignancies, including bladder cancer, colorectal cancer, 
and triple-negative breast cancer.34–37 Similarly, recent evidence 
has revealed that COL5A2 or COL8A1 expression was related to 
poor prognosis or tumor progression,38–45 also highlighting their 
potential diagnostic values for different malignancies.38,46,47 FN1, 
acting as an upstream or downstream regulator, was previously 
shown to promote or inhibit tumor progression in various malig-
nancies.48–51 THBS1 was found to positively associate with aggres-
sive tumor development and progression.52–54 Additionally, elevat-
ed microvessel counts were detected in endometrial cancer patients 
with high THBS1 expression, suggesting a role of THBS1 in tumor 
angiogenesis.55 But few studies reported roles of FN1, COL3A1, 
THBS1, COL5A2, and COL8A1 in endometrial cancer, more stud-
ies are warranted. Taken together, we hypothesize that GREM1 is 
involved in the modulation of ECM-related pathways, especially 
those mainly regulated by collagen genes. Modulation of the ECM 
may allow for tumor invasion or metastasis, which has been shown 
in studies of estrogen receptor-negative breast cancer.56

The tumor microenvironment, especially immune-cell infiltra-
tion, was shown to be linked to ECM modulation in tumor pro-
gression.57,58 Leveraging the CIBERSOT and ssGSEA algorithms, 
the infiltration of immune cells in low-GREM1 and high-GREM1 
groups was measured to explore the linkage of GREM1 and the 
tumor microenvironment of endometrial cancer. We aimed to 
identify the specific immune cells correlated with GREM1 and 
its interactive key genes, with the upregulation of infiltration in 
high-GREM1 groups. Differential expression analysis showed that 
the infiltration of mast cells was elevated in high-GREM1 groups. 
Analysis of correlations with immune-cell subtypes revealed 
that mast cell infiltration levels were positively associated with 
GREM1 and key genes. Previous evidence supports the linkage 
between increased mast cell count and the progression of endome-
trial cancer, such as angiogenesis.59 Furthermore, the high density 
of mast cells is significantly associated with myometrial invasion 
in endometrial cancer, which shows the function of mast cells in 
tumor progression.60 However, because of the limited number of 
reports on how mast cells contribute to the progression of endo-
metrial cancer, more functional studies are required to clarify their 
role. Overall, our data indicate that mast cell infiltration in endo-
metrial cancer may be influenced by ECM modulation, which is 
correlated with GREM1 and key genes.

Conclusions
Our results suggest the regulation of ECM-related signal path-
ways in endometrial cancer by GREM1 expression, most likely 

with ECM degradation regulated by collagen genes (COL3A1, 
COL5A2, and COL8A1). Additionally, we found that the expres-
sion of GREM1 and its key genes were positively correlated with 
mast cells infiltrated in endometrial cancer. The infiltration lev-
els of mast cells were upregulated in higher-GREM1 expression 
groups. These results suggested that mast cells could be used as 
a marker of immune infiltration in aggressive endometrial cancer 
having higher GREM1 expression. Overall, our study shows that 
GREM1 expression correlated with endometrial cancer progres-
sion by regulating ECM modulation, which adds to our under-
standing of the molecular effects of GREM1 and is a reference for 
further functional studies in endometrial cancer.
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